ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
C. Riffard, H. Toubon, S. Pelletier, M. Batifol, J. M. Vidal
Nuclear Technology | Volume 154 | Number 2 | May 2006 | Pages 186-193
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3727
Articles are hosted by Taylor and Francis Online.
Before the reprocessing of low-enriched uranium (LEU) fuels at La Hague plant, the assemblies are characterized with a nondestructive assay based on neutron emission (NE) and gamma-ray emission combined with the CESAR depletion code, giving the burnup (BU) with a good accuracy (±5% within a batch of fuels from one of COGEMA-La Hague's clients). The measurements confirm the hypothesis of the safety-criticality analysis of the process, in the context of the BU credit allowance. There is a need to extend the allowance of the reprocessing plants to the case of more highly enriched LEU fuels and to the case of mixed-oxide (MOX) fuels. The aim is to propose an upgraded method, valid for both LEU and MOX fuels, giving the average BU with an uncertainty lower than ±15% for MOX fuels (without any modification of the current acceptance criteria for UO2 fuel, i.e., ±15%), with a complementary module checking the operator data using the gamma-ray emission and the CESAR depletion code. In particular, the NE was interpreted with depletion calculations in the case of MOX fuels, which is the principal aim of this paper. This allows the BU determination of MOX fuels, which has been qualified during a measurement campaign in La Hague with 20 MOX assemblies. The mean BU of pressurized water reactor MOX assemblies has been determined for the first time with a maximum discrepancy of ±5% compared to the declared value.