ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. Sepold, G. Schanz, M. Steinbrück, J. Stuckert, A. Miassoedov, A. Palagin, M. Veshchunov
Nuclear Technology | Volume 154 | Number 1 | April 2006 | Pages 107-116
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT06-A3721
Articles are hosted by Taylor and Francis Online.
The purpose of the QUENCH experimental program at the Karlsruhe Research Center is to investigate the hydrogen source term that results from quenching an uncovered core, to examine the physicochemical behavior of overheated fuel elements under different flooding/cooling conditions, and to create a database for model development and code improvement. The QUENCH-07 and -09 test bundles consisted of 21 rods, 20 of which were electrically heated over a length of 1.024 m. The Zircaloy-4 rod cladding and the grid spacers were identical to those used in Western-type light water reactors (LWRs), whereas the fuel was represented by ZrO2 pellets. In both experiments the central rod was made of an absorber rod with B4C pellets and stainless steel cladding and of a Zircaloy-4 guide tube. Failure of the absorber rod cladding was detected at the same temperature in both experiments, i.e., at ~1555 to 1585 K. After a B4C oxidation phase at ~1720 to 1780 K and a subsequent transient test phase to well above 2000 K, cooling of the test bundle was accomplished by injecting saturated steam at the bottom of the test section. The presence of the B4C absorber material in the central rod triggers the formation of eutectic melts, i.e., melts that are formed far below the melting point of metallic Zircaloy (~2030 K), and the oxidation of boron/carbon/zirconium-containing melt can lead to increased amounts of hydrogen and to production of CO, CO2, and CH4 compared to a bundle without a control rod. The total amount of hydrogen released during the flooding, i.e., cooling, phase was, however, significantly larger in QUENCH-09 (~0.400 kg) than in QUENCH-07 (~0.120 kg). It is conjectured that it is mainly the period of steam starvation prior to the cooling phase of QUENCH-09 (steam flow reduction from 3.3 to 0.4 g/s for a duration of ~11 min) that caused the enhanced zirconium oxidation in the cooling phase of QUENCH-09. This is the revised and updated version of the paper that was presented at the 2004 International Meeting on LWR Fuel Performance in Orlando, Florida, on September 19-22, 2004, under the title "Results of the QUENCH-09 Experiment Compared to QUENCH-07 (LWR-Type Test Bundles with B4C Absorber)."