ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Luis E. Herranz, F. J. S. Velasco, Claudia L. Del Prá
Nuclear Technology | Volume 154 | Number 1 | April 2006 | Pages 85-94
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3719
Articles are hosted by Taylor and Francis Online.
Steam generator tube rupture sequences are identified as major contributors to the risk assessments of pressurized water reactors. Despite very low probability, they involve a direct pathway for radioactivity release into the environment. Nonetheless, fission products could be partially retained in the secondary side of the steam generator, even in the absence of water. This paper summarizes the main results of a bench-scale experimental program focused on the aerosol retention near the tube breach at the secondary side of a dry steam generator. The major variables investigated were the breach configuration (i.e., type, orientation, and location) and the gas mass flow rate. The results showed that near the breach, aerosol retention is low (<20%), and it generally decreases when the gas mass flow rate increases. Discussion of the experimental results suggested that certain phenomena, such as fragmentation and/or resuspension, as well as particle nature could have a large effect on the scenario studied, and they should be considered as potential issues and/or variables to be explored in future work.