ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Jayaraj, K. Thyagarajan, C. Mallika, U. Kamachi Mudali
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 58-70
Technical Paper | Reprocessing | doi.org/10.13182/NT14-90
Articles are hosted by Taylor and Francis Online.
Long-term corrosion testing of a mock-up dissolver vessel to be employed in the aqueous reprocessing of spent nuclear fuels of fast breeder reactors has been initiated. In this work, a Zircaloy-4 (Zr-4) mock-up dissolver vessel was used as the testing facility to evaluate the corrosion rate of several candidate materials based on zirconium and titanium in the boiling and vapor phases of simulated dissolver solution (SDS) comprising fission and corrosion product ions in 11.5 M nitric acid. Several campaigns of 100, 250, 500, 1000, and 2500 h of operation were completed. The corrosion rates of the candidate materials are expressed both in micrometers per year (μm/yr) and mils per year (mils/yr). Zirconium-702, Zr-4, autoclaved Zr-4, and commercial pure titanium (CP-Ti) exhibited low corrosion rates of 0.08 to 0.23 μm/yr (0.003 to 0.009 mils/yr) in the as-received and welded conditions exposed to the boiling liquid phase of the dissolver solution for 2500 h. Whereas the CP-Ti and CP-Ti weld exhibited marginally higher corrosion rates of 1.0 μm/yr (0.04 mils/yr) and 1.9 μm/yr (0.075 mils/yr), respectively, in the vapor phase of the dissolver solution, the lowest corrosion rate of 0.08 μm/yr (0.003 mils/yr) was obtained for the autoclaved Zr-4 sample exposed to boiling SDS. Scanning electron microscope investigations did not reveal any corrosion attack for the titanium and zirconium samples. Laser Raman spectroscopic analysis confirmed that the origins of passivity of zirconium and titanium samples were due to the formation of ZrO2 and TiO2, respectively. However, the CP-Ti/AISI Type 304L stainless steel (SS 304L) and Zr-4/SS 304L dissimilar welds had undergone severe corrosion. Visual inspection of the Zr-4 dissolver vessel revealed no corrosion attack after operation for 2500 h. The results of this 2500-h campaign would serve as the baseline data for the analysis of future long-term campaigns.