ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Raymond S. Troy, Robert V. Tompson, Tushar K. Ghosh, Sudarshan K. Loyalka
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 71-91
Technical Note | Fission Reactors | doi.org/10.13182/NT14-109
Articles are hosted by Taylor and Francis Online.
Characterization of graphite particles (dust) produced by the rotational abrasion that would occur in a shifting pebble bed reactor is of interest for purposes of maintenance, safety, and operation. To better understand this type of particle generation, we have modified and used our existing test apparatus to achieve rotational abrasion in a 1% to 5% relative humidity air environment. We have used both a commercial, nonnuclear-grade graphite (GM-101 from Graphtek, LLC) and a nuclear-grade graphite (MLRF1 from SGL Carbon, Ltd.). In both cases, we used two spheres with one being held stationary and with the other being rotated while under load and in contact with the first. We have obtained size distributions for the abraded particles. We have also fit lognormal functions to those size distributions (for use in nuclear computer codes); determined particle shapes; measured chamber temperature and humidity during the tests; measured and calculated wear rates of the spheres; measured the surface roughness of both pretest and posttest samples; and measured particle surface areas, pore volumes, and pore volume distributions of the particles produced during the abrasion of the graphite surfaces under different loadings and with different rotating speeds. We also carried out additional tests to measure the surface temperature near the contact point. The experiments showed that as loading (analogous to pebble depth in the reactor) and rotation speeds increase, so do wear rates, concentrations of particles, and particle surface area. The shape of the dust particles was in every case nonspherical, as one would expect. The surface area of bulk GM-101 graphite is ∼0.58 m2·g−1, and the surface area of bulk MLRF1 is ∼2.78 m2·g−1. After testing, abraded particle surface areas were observed to increase to 493 m2·g−1 for GM-101 and to 545 m2·g−1 for MLRF1. Wear rates of the spheres during testing were observed to range from 0.003 to 0.07 g min−1 per contact site. The upper limit on the size of the abraded particles that was observed was less than ∼4000 nm.