ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Rajeev Ranjan, R. K. Singh, S. K. Sikka, Anil Kakodkar
Nuclear Technology | Volume 153 | Number 3 | March 2006 | Pages 341-359
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3712
Articles are hosted by Taylor and Francis Online.
This paper highlights a three-dimensional (3-D) transient numerical simulation of the Baneberry event of December 18, 1970, with a 10-kT yield and a 278-m source depth, conducted at the Nevada Test Site. This site has complex geological features with preexisting faults and layered geological strata characterized by a hard Paleozoic layer below the source, and saturated tuff on the west side of the source and clay-rich tuff toward the east side, both overlaid by top alluvial layers. In addition, a layer of 50% montmorillonite is sandwiched between two layers of 20% montmorillonite on the east end. This event is reported to have vented because of fault rupture and shock-wave reflections from a closer hard Paleozoic layer near the source. Here, the shock-induced slip along the preexisting fault plane has an important bearing on the containment efficiency of this event. None of the earlier reported simulation studies address the above slip phenomenon and the influence of variation in geological strata in the presence of the preexisting fault in a 3-D framework for underground nuclear events. The paper describes the capabilities of the SHOCK-3D finite element code for simulating short-time shock-wave propagation, fault rupture leading to sliding along the fault plane, and subsequent crater formation at ground zero with a long-duration transient computation to study the quasi-static behavior of the Baneberry event. Precise modeling schemes of the composite geological strata and fault system demonstrate that a dip-slip mechanism had developed for this event, leading to final venting. The present numerical computation results with SHOCK-3D are in excellent agreement with site observations. In addition, the limitations of earlier reported simulation results from the TENSOR two-dimensional axisymmetric code presented by Terhune et al. have also been overcome.