ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Rajeev Ranjan, R. K. Singh, S. K. Sikka, Anil Kakodkar
Nuclear Technology | Volume 153 | Number 3 | March 2006 | Pages 341-359
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3712
Articles are hosted by Taylor and Francis Online.
This paper highlights a three-dimensional (3-D) transient numerical simulation of the Baneberry event of December 18, 1970, with a 10-kT yield and a 278-m source depth, conducted at the Nevada Test Site. This site has complex geological features with preexisting faults and layered geological strata characterized by a hard Paleozoic layer below the source, and saturated tuff on the west side of the source and clay-rich tuff toward the east side, both overlaid by top alluvial layers. In addition, a layer of 50% montmorillonite is sandwiched between two layers of 20% montmorillonite on the east end. This event is reported to have vented because of fault rupture and shock-wave reflections from a closer hard Paleozoic layer near the source. Here, the shock-induced slip along the preexisting fault plane has an important bearing on the containment efficiency of this event. None of the earlier reported simulation studies address the above slip phenomenon and the influence of variation in geological strata in the presence of the preexisting fault in a 3-D framework for underground nuclear events. The paper describes the capabilities of the SHOCK-3D finite element code for simulating short-time shock-wave propagation, fault rupture leading to sliding along the fault plane, and subsequent crater formation at ground zero with a long-duration transient computation to study the quasi-static behavior of the Baneberry event. Precise modeling schemes of the composite geological strata and fault system demonstrate that a dip-slip mechanism had developed for this event, leading to final venting. The present numerical computation results with SHOCK-3D are in excellent agreement with site observations. In addition, the limitations of earlier reported simulation results from the TENSOR two-dimensional axisymmetric code presented by Terhune et al. have also been overcome.