ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Miltiadis Alamaniotis, Sangkyu Lee, Tatjana Jevremovic
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 41-57
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-75
Articles are hosted by Taylor and Francis Online.
Radioisotope identification from low-count-rate spectra or spectra obtained through low-resolution detectors constitutes a challenging environment for accurate spectral analysis. The use of intelligent processing algorithms is a significant step in analyzing spectra, conceivably increasing the accuracy of the nuclide identification in such scenarios. This paper introduces an intelligent methodology for automated processing of low-count gamma-ray spectra acquired with a scintillation detector aimed at identifying radioisotope patterns, and it evaluates the performance of this methodology against a set of experimentally acquired gamma-ray spectra. The novel methodology adopts tools from the “artificial intelligence library” to preprocess the spectrum and subsequently identify radioisotopes. In particular, in the preprocessing step, the measured spectrum is divided into equally long energy intervals, whose values are replaced with those computed by a support vector regressor equipped with a linear kernel function. In the next step, the fuzzy logic–based identifier matches spectral peaks with entries in the spectral library, aiming at identifying isotopic signatures in the spectrum. The proposed intelligent methodology is benchmarked against the multiple-linear-regression (MLR) spectrum-fitting algorithm. Assessment results demonstrate the effectiveness of the proposed methodology in identifying isotopes compared with the MLR algorithm by significantly reducing the number of false detections and improving correct detection performance. Furthermore, the proposed methodology exhibits an overall higher detection sensitivity (by 13.3%) and precision (by 46.8%) than those obtained with MLR.