ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Lili Tong, Jie Zou, Jun Tao, Xuewu Cao
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 15-26
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-93
Articles are hosted by Taylor and Francis Online.
In the advanced passive pressurized water reactor, a passive containment cooling system (PCCS) has been adopted to cool the containment—comprising a cylindrical steel vessel—during postulated accidents, whereby the decay heat is removed through water film evaporating enhanced by air cooling outside the containment. In this study, an integrated safety analytical code is used to study the heat removal capacity of PCCS during severe accidents and its influence on severe accident management measures. The coupled analytical model includes the reactor cooling system, engineered safety features, containment system, and PCCS. Containment responses during typical design-basis accidents and integrated severe accident scenarios are calculated and validated using a design control document and probabilistic risk assessment, respectively. Four typical severe accident sequences that contribute to core damage frequency or containment high pressure are selected to evaluate the containment response. The results show that the containment pressure can be controlled at a relatively low level within 72 h with the heat removal by PCCS. Analysis of the effects of PCCS water cooling recovery during the late period of the accident sequence in severe accident management guidelines alerts as to the risk of hydrogen combustion after breaking the steam-inert atmosphere inside containment. Moreover, sensitivity analysis has been performed to study the influence of the water film coverage rate and environmental air temperature, and it shows that a decrease of the water film coverage rate and an increase of the environmental air temperature reduce the PCCS cooling capacity.