ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
D. W. Millsap, M. E. Cournoyer, S. Landsberger, J. Tesmer, Y. Wang
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 106-112
Technical Note | Materials for Nuclear Systems | doi.org/10.13182/NT14-47
Articles are hosted by Taylor and Francis Online.
Nylon 6,6 tensile specimens, conforming to the casing for self-contained fire extinguisher systems, have been irradiated using both an accelerator He++ ion beam and a 5-Ci PuBe neutron source to model the radiation damage these systems would likely incur over a lifetime of operation within glove boxes. Following irradiation, these samples were mechanically tested using standard practices as described in ASTM D638. The results of the He++ study indicate that the tensile strength of the nylon specimens undergoes some slight (<10%) degradation while other properties of the samples, such as elongation and tangent modulus, appear to fluctuate with increasing dose levels. The He++-irradiated specimens also have a noticeable level of discoloration corresponding to increasing levels of dose. The neutron-irradiated samples show a higher degree of mechanical degradation than the He++-irradiated samples.