ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. P. Riley, L. Mohanta, F. B. Cheung, S. M. Bajorek, K. Tien, C. L. Hoxie
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 336-344
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-80
Articles are hosted by Taylor and Francis Online.
Spacer grids have been found to enhance downstream convective heat transfer and to strongly influence droplet size distributions through early spacer grid rewet and droplet breakup. Existing models for enhancement of heat transfer and droplet breakup, however, do not appear to accurately account for these interactions between the coolant and the spacer grid. Data from two series of rod bundle heat transfer tests, low injection rate forced reflood tests, and droplet injection tests are presented in this paper to describe the effects of the spacer grids during dispersed flow film boiling. Heat transfer downstream of the spacer grids is clearly enhanced by the presence of the droplets, while the downstream droplet size was found to depend on the condition of the spacer grid: dry or wetted. Results of this study demonstrate the need to adequately account for the separate modes of dry and wet spacer grid heat transfer enhancement in predicting the thermal-hydraulic behavior during reflood transients.