ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. P. Riley, L. Mohanta, F. B. Cheung, S. M. Bajorek, K. Tien, C. L. Hoxie
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 336-344
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-80
Articles are hosted by Taylor and Francis Online.
Spacer grids have been found to enhance downstream convective heat transfer and to strongly influence droplet size distributions through early spacer grid rewet and droplet breakup. Existing models for enhancement of heat transfer and droplet breakup, however, do not appear to accurately account for these interactions between the coolant and the spacer grid. Data from two series of rod bundle heat transfer tests, low injection rate forced reflood tests, and droplet injection tests are presented in this paper to describe the effects of the spacer grids during dispersed flow film boiling. Heat transfer downstream of the spacer grids is clearly enhanced by the presence of the droplets, while the downstream droplet size was found to depend on the condition of the spacer grid: dry or wetted. Results of this study demonstrate the need to adequately account for the separate modes of dry and wet spacer grid heat transfer enhancement in predicting the thermal-hydraulic behavior during reflood transients.