ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Christopher R. Hughes, Oswaldo Pelaez, Duwayne Schubring, Kelly A. Jordan
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 292-300
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-74
Articles are hosted by Taylor and Francis Online.
This work concerns the comparison of supercritical water reactor (SCWR) assembly designs using coupled reactor physics and thermal-hydraulic methods. In the SCWR, large density gradients in the supercritical water (used as coolant and moderator) will require detailed multiphysics analysis. The Super Light Water Reactor (SLWR) was analyzed previously [Hughes et al., Nucl. Eng. Des., Vol. 270 (2014)], where MCNP5 was coupled with density and temperature results from a single-channel code. MCNP5 then provided the single-channel code with a linear heat profile. In the present work, that proposed assembly design is determined to have a negative density coefficient of reactivity. Two alternate designs with different geometries and water-to-fuel ratios are presently considered to address this issue. It is found that adding an additional row of pins is more effective at producing a positive density coefficient than is reducing the size of the moderator boxes.