ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yanhua Zheng, Hanliang Bo, Duo Dong
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 234-239
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT06-A3703
Articles are hosted by Taylor and Francis Online.
As a new type of control rod driving system, the hydraulic control rod driving system (HCRDS) has long been applied in a 5-MW nuclear heating reactor, and the safety and the reliability of the system have been proven. The principle of the work and the step-up operation of the HCRDS have been introduced in this paper. Based on the theoretical model, the temperature influence on the static holding-flow rate, the dynamic holding-flow rate, and the working holding-flow rate has been studied. It indicates that with the increase of the temperature, the static and dynamic holding-flow rates will increase while the working holding-flow rate will decrease.A detailed analysis of the step-up process on various temperature conditions has been carried out. Considering the great temperature influence on the step-up operation of the system, the method of temperature compensation to select suitable delay time and working holding-flow rate in a certain temperature province is put forward to offset the influence. The analysis can be conducive to widespread availability of the HCRDS and establish a basis for further research and improvement.