ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Y. Ronen, M. Aboudy, D. Regev
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 224-233
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT06-A3702
Articles are hosted by Taylor and Francis Online.
There is growing interest in the use of 242mAm as a nuclear fuel. Since the thermal absorption cross section of 242mAm is very high (a = 8950 b), the best way to obtain 242mAm is by the capture of fast or epithermal neutrons in 241Am. As a result, we have considered replacing the radial blanket of a fast reactor, which is usually depleted uranium, with 241AmO2.We chose a 714-MW(thermal) MONJU reactor, and we replaced some of the radial blanket and the outer core assemblies with 10 676 kg of 241AmO2 fuel. We calculated the reactor core by using the MCNP Monte Carlo code.The total amount of 242mAm becomes stabilized after 16 yr, but the enrichment does not. In our calculation, ~7.2% enrichment is obtained after 18 yr. Obtaining higher enrichments might indicate that 242mAm nuclear fuel can be used without further enrichment in many cases.The results presented in this paper are considered an upper limit scenario. In particular the target 241Am loading is not likely to be available soon, but 242mAm production from lesser amounts is easily scaled down proportional to the actual mass irradiated.