ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y. Ronen, M. Aboudy, D. Regev
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 224-233
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT06-A3702
Articles are hosted by Taylor and Francis Online.
There is growing interest in the use of 242mAm as a nuclear fuel. Since the thermal absorption cross section of 242mAm is very high (a = 8950 b), the best way to obtain 242mAm is by the capture of fast or epithermal neutrons in 241Am. As a result, we have considered replacing the radial blanket of a fast reactor, which is usually depleted uranium, with 241AmO2.We chose a 714-MW(thermal) MONJU reactor, and we replaced some of the radial blanket and the outer core assemblies with 10 676 kg of 241AmO2 fuel. We calculated the reactor core by using the MCNP Monte Carlo code.The total amount of 242mAm becomes stabilized after 16 yr, but the enrichment does not. In our calculation, ~7.2% enrichment is obtained after 18 yr. Obtaining higher enrichments might indicate that 242mAm nuclear fuel can be used without further enrichment in many cases.The results presented in this paper are considered an upper limit scenario. In particular the target 241Am loading is not likely to be available soon, but 242mAm production from lesser amounts is easily scaled down proportional to the actual mass irradiated.