ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Matt Bernard, Ted Worosz, Seungjin Kim, Chris Hoxie
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 225-235
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-70
Articles are hosted by Taylor and Francis Online.
This study investigates two issues in the practical application of the local conductivity probe for two-phase flow measurements. First, the effects of signal “ghosting,” an electrical interference inherent to multiplexing data acquisition systems, on the measured two-phase flow parameters are examined. A revised conductivity probe circuit is proposed to remove the effects of ghosting. The characteristics of signal ghosting are investigated experimentally with a specialized conductivity probe that enables concurrent acquisition of ghosted and unghosted signals within the same flow condition. It is demonstrated that ghosting causes bubble velocity measurements that are artificially high and, consequently, artificially low interfacial area concentration measurements that depend on sampling frequency and sensor impedance. The revised circuit successfully eliminates this variability. Second, the sensitivity of measured two-phase flow parameters to increasing data acquisition sampling frequency is investigated experimentally. Measurements are acquired at incrementally increasing sampling frequencies with a four-sensor conductivity probe in 13 vertical-upward air-water two-phase flow conditions with superficial liquid and gas velocities ranging from 1.00 to 5.00 m/s and 0.17 to 2.0 m/s, respectively. It is found that the void fraction and average bubble velocity are insensitive to the sampling frequency, while the detected number of bubbles and interfacial area concentration can demonstrate a strong dependence. Considerations for selecting appropriate sampling frequencies in different flow conditions are discussed.