ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Joshua Wheeler, Ted Worosz, Seungjin Kim
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 215-224
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-69
Articles are hosted by Taylor and Francis Online.
Understanding the effects of spacer grids on the coolant flow through a nuclear reactor core is required for best-estimate design and analysis of the plant. The impact of a spacer grid on two-phase flows is of particular importance because the geometric effects of the grid can alter the two-phase flow structure and, consequently, the mass, momentum, and energy transfer characteristics. Therefore, a scaled separate-effects test facility is constructed to investigate the effects of a spacer grid on the hydrodynamics of air-water two-phase flow through a rod bundle. The test facility is scaled to maintain hydrodynamic and geometric similarity to single- and two-phase flows in a conventional pressurized water reactor and to facilitate detailed local measurements of two-phase flow parameters around the simulant fuel rods with a four-sensor conductivity probe. This paper presents measurements of local time-averaged two-phase flow parameters acquired upstream and downstream of the spacer grid with the conductivity probe in a representative subchannel of a 1×3 rod bundle for eight flow conditions. Characteristic features of the development of the two-phase flow parameters along the test section are discussed.