ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Giang N. Nguyen, Sudarshan K. Loyalka
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 161-173
Technical Paper | Reactor Safety | doi.org/10.13182/NT14-81
Articles are hosted by Taylor and Francis Online.
Source term is an important issue in safety assessment of nuclear power plants. Therefore, modeling of particulate concentration in reactor coolant systems during normal operation and hypothesized accidents is of continuing interest. We report here on exploration of a numerical solution of the Reeks-Hall equation with the use of the fractional resuspension rate in its original integral form. The numerical results for particulate concentration are compared with those obtained from the exact expression given by Williams and experimental data provided by Wells et al. The numerical results agree very well with exact results and also agree well with the data of Wells et al. Applications of the numerical method to problems with a time-dependent resuspension rate (for which exact solutions are not available) are explored, and some typical results are reported. The numerical method will be useful for verifying approximate techniques that are used for aerosol modeling in nuclear source term computer programs.