ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Jorge Navarro, Terry A. Ring, David W. Nigg
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 183-192
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-4
Articles are hosted by Taylor and Francis Online.
A deconvolution methodology aimed to reduce the uncertainty for nondestructively predicting fuel burnup using gamma spectra collected with LaBr3 scintillators was developed. Deconvolution techniques have been used in the past to improve photopeak resolution of data collected using gamma detectors; however, they have not been used as a tool to more accurately predict fuel burnup. The deconvolution methodology consisted of calculating the detector response function using Monte Carlo simulations, validating the detector response function against experimental data, and implementing the maximum likelihood expectation maximization algorithm to enhance the LaBr3 gamma spectra. The deconvolution methodology was first tested on single-isotopic simulated data; later it was applied to fuel simulated data that were based on Advanced Test Reactor (ATR) fuel gamma spectra. The study showed that LaBr3 gamma spectra photopeak resolution and quality can be improved significantly using deconvolution methods, in addition to proving that enhancement techniques can be used to nondestructively predict ATR fuel burnup more accurately than using LaBr3 data without enhancements.