ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Jorge Navarro, Terry A. Ring, David W. Nigg
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 183-192
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-4
Articles are hosted by Taylor and Francis Online.
A deconvolution methodology aimed to reduce the uncertainty for nondestructively predicting fuel burnup using gamma spectra collected with LaBr3 scintillators was developed. Deconvolution techniques have been used in the past to improve photopeak resolution of data collected using gamma detectors; however, they have not been used as a tool to more accurately predict fuel burnup. The deconvolution methodology consisted of calculating the detector response function using Monte Carlo simulations, validating the detector response function against experimental data, and implementing the maximum likelihood expectation maximization algorithm to enhance the LaBr3 gamma spectra. The deconvolution methodology was first tested on single-isotopic simulated data; later it was applied to fuel simulated data that were based on Advanced Test Reactor (ATR) fuel gamma spectra. The study showed that LaBr3 gamma spectra photopeak resolution and quality can be improved significantly using deconvolution methods, in addition to proving that enhancement techniques can be used to nondestructively predict ATR fuel burnup more accurately than using LaBr3 data without enhancements.