ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Thomas K. S. Liang, Chung-Yu Yang, Liang-Che Dai, Fu-Kuang Ko
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 184-196
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3699
Articles are hosted by Taylor and Francis Online.
The blowdown of feedwater (FW) line breaks (FWLBs) has been successfully analyzed by using the Appendix K version of RELAP5-3D. To adequately simulate a feedwater blowdown event, one must consider the main steam system, the turbine system, the moisture separator reheaters (MSRs), the main condenser, and the condensate and FW system as all are involved in the modeling scope. The essential components of the simulation scope include the steam header, the high- and low-pressure turbines, the MSR, the FW pump (FWP) turbines, the main condenser, the condensate and booster pumps, the FW heaters of six stages, the steam extraction of seven stages, and the turbine-driven FWPs. All of the components are connected by associated piping as designed.Regarding the FW blowdown analysis, blowdown mass and energy are the two most important parameters to be calculated. Several essential phenomena are involved in this FW blowdown event, which include critical flow at the break and the internal venturi, flashing of FW near the break, runout and coastdown of the FWPs, steam extraction to FW heaters and FWP turbines, flashing of saturated water initially stored inside the FW heater shell sides and MSR drain tanks, energy release from saturated water and system metal, and cold water transportation from the main condenser to the break. All the essential processes involved during FWLB can be well simulated by the advanced Appendix K version of RELAP5-3D. The blowdown analysis calculated by RELAP5-3D/K for the FWLB was contracted to provide a solid basis for the final safety analysis report containment design analysis for the Lungmen advanced boiling water reactor (ABWR) plant. The successful application of RELAP5 for the entire balance-of-plant simulation and associated FW blowdown analysis indicates that the advanced RELAP5 can extend its traditional reactor safety analysis to the entire power conversion system simulation and analysis.