ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Dong Won Lee, Hee Cheon No, Eu Hwak Lee, Seung Jong Oh, Chul-Hwa Song
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 175-183
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3698
Articles are hosted by Taylor and Francis Online.
Experiments have been carried out to investigate the boiling phenomena in the downcomer, and RELAP5/MOD3.2 has been assessed with the present experimental data. A heated wall with a thickness of 8.2 cm and a height of 32.5 cm is used. The wall is made of the same material as the prototype (APR1400) with chrome coating to protect against rusting. From the experiment, we visually observed strong liquid recirculation and vapor jetting near the heated wall. These phenomena arose from axial migration of voids located only in the thin layer of the heated wall, whereas there was little bubble migration to the bulk region. The size of the thin layer is below 4 cm, which is used for the determination of the radial nodal size in radial double-node schemes. The RELAP5 calculations using three different nodal schemes are compared with experimental data in terms of water level, void fraction, wall temperatures, and phase velocities. The radial single-node scheme produces no liquid recirculation, resulting in a sudden level drop due to a sudden increase in void fraction. The double-node scheme with top-bottom radial connections yields strong circulation, eliminating the sudden level drop. As a result, the scheme produces better results than the radial single-node scheme and a double-node scheme with all radial connections. Based on the information from measurement of the local liquid velocity profile and visual observations, a drift velocity model is developed for application into a downcomer with a large gap and a vertical heated wall. The proposed drift velocity model has been implemented into RELAP5 and verified with experimental results.