ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Joo Hwan Park, Jee-Won Park, Hangbok Choi, Myung Seung Yang
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 164-174
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3697
Articles are hosted by Taylor and Francis Online.
Thermal-hydraulic compatibility of the DUPIC fuel bundle with a 713-MW(electric) Canada deuterium uranium (CANDU-6) reactor was studied by using both the single-channel and subchannel analysis methods. The single-channel analysis provides the fuel channel flow rate, pressure drop, critical channel power, and the channel exit quality, which are assessed against the thermal-hydraulic design requirements of the CANDU-6 reactor. The single-channel analysis by the NUCIRC code showed that the thermal-hydraulic performance of the DUPIC fuel is not different from that of the standard CANDU fuel. Regarding the local flow characteristics, the subchannel analysis also showed that the uncertainty of the critical channel power calculation for the DUPIC fuel channel is very small. As a result, both the single- and subchannel analyses showed that the key thermal-hydraulic parameters of the DUPIC fuel channel do not deteriorate compared with the standard CANDU fuel channel.