ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ian Porter, Travis W. Knight, Patrick Raynaud
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 174-182
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-100
Articles are hosted by Taylor and Francis Online.
Nuclear reactor systems codes have the ability to model the system response in an accident scenario based on known initial conditions (ICs) at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermomechanical fuel rod response models needed for best-estimate prediction of fuel rod failure. Alternatively, the reverse can be said about fuel performance codes; they can lack the ability to capture and model the thermal-hydraulic (T-H) influence of adjacent fuel rods and the rod's location in the reactor core. This work analyzes the limitations in using fuel performance codes to represent in-reactor conditions as determined by full-core T-H codes. The codes used in this analysis are the U.S. Nuclear Regulatory Commission's steady-state fuel performance code FRAPCON-3.5 and T-H code TRACE-V5P3. In order to assess the impact of the limitations found in the codes, several modifications were made to all of the codes to improve code-to-code consistency. The modifications to the fuel performance code include adding the ability to model gamma-ray heating and providing realistic core coolant conditions. The T-H code modifications include adding the ability to model the fuel with axially varying burnup-dependent fuel and cladding dimensional changes and corrosion characteristics. The fuel in a Westinghouse four-loop pressurized water reactor was modeled to assess the impacts these modifications have on fuel performance and ICs for transient analysis. The results of this study show that current modeling assumptions (and limitations) can yield both conservative and nonconservative results on several important licensing criteria.