ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yoshiharu Sakamura, Masatoshi Iizuka, Tadafumi Koyama, Shinichi Kitawaki, Akira Nakayoshi
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 193-206
Technical Paper | Reprocessing | doi.org/10.13182/NT14-64
Articles are hosted by Taylor and Francis Online.
A novel approach to extracting transuranic elements (TRUs) from molten salt into liquid Cd using U metal as a reductant was investigated for the molten salt electrorefining process. We considered two methods of adding U metal: direct extraction (DE) and electrochemical extraction (EE). In the DE method, U metal added to Cd is dissolved and exchanged for TRU ions in the salt. The EE method is based on the principle of a concentration cell. When U metal and Cd separately placed in the salt are electrically connected, the U metal is anodically dissolved in the salt, and U and TRU ions are reduced at the Cd. The advantages of these methods over the conventional electrolytic method are as follows: The container for Cd can be made of steel, dendritic U metal does not form on the surface of the Cd or the crucible, and the operation is simple and stable. It was experimentally demonstrated that Pu and Am could be extracted from LiCl-KCl melt into liquid Cd by both the DE and EE methods when U metal collected at the solid cathode was used as a reductant. Crucibles made of steel could be used as containers for Cd, and a total of ∼3 wt% of U, Pu, and Am in the Cd was collected in 10 h. In the EE tests, the separation factors among U, Pu, and Am were always equal to the values at equilibrium. The rate-determining step for the extraction was not the mass transfer in the Cd or salt phase but the electron transfer at the Cd-salt interface. Then, a concept high-performance electrorefiner equipped with two anode–solid cathode modules and an EE or DE module was preliminarily designed.