ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yoshiharu Sakamura, Masatoshi Iizuka, Tadafumi Koyama, Shinichi Kitawaki, Akira Nakayoshi
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 193-206
Technical Paper | Reprocessing | doi.org/10.13182/NT14-64
Articles are hosted by Taylor and Francis Online.
A novel approach to extracting transuranic elements (TRUs) from molten salt into liquid Cd using U metal as a reductant was investigated for the molten salt electrorefining process. We considered two methods of adding U metal: direct extraction (DE) and electrochemical extraction (EE). In the DE method, U metal added to Cd is dissolved and exchanged for TRU ions in the salt. The EE method is based on the principle of a concentration cell. When U metal and Cd separately placed in the salt are electrically connected, the U metal is anodically dissolved in the salt, and U and TRU ions are reduced at the Cd. The advantages of these methods over the conventional electrolytic method are as follows: The container for Cd can be made of steel, dendritic U metal does not form on the surface of the Cd or the crucible, and the operation is simple and stable. It was experimentally demonstrated that Pu and Am could be extracted from LiCl-KCl melt into liquid Cd by both the DE and EE methods when U metal collected at the solid cathode was used as a reductant. Crucibles made of steel could be used as containers for Cd, and a total of ∼3 wt% of U, Pu, and Am in the Cd was collected in 10 h. In the EE tests, the separation factors among U, Pu, and Am were always equal to the values at equilibrium. The rate-determining step for the extraction was not the mass transfer in the Cd or salt phase but the electron transfer at the Cd-salt interface. Then, a concept high-performance electrorefiner equipped with two anode–solid cathode modules and an EE or DE module was preliminarily designed.