ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Staffan Qvist
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 11-27
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-30
Articles are hosted by Taylor and Francis Online.
In this study, the characteristics of changes in reactivity due to increasing burnup of uranium-fueled fast reactors are analyzed. A new classification system for nuclear reactor cores based on their uncontrolled tendency for reactivity changes during burnup was introduced and the design-optimization strategy for any fast reactor core aimed at a minimized reactivity swing is outlined. The 235U feed-fuel enrichment level that minimizes the burnup reactivity swing of a sodium-cooled metallic-fueled core is 10% to 12.5% for an average target fuel burnup of 1% to 20% FIMA (fission of initial metal atom). The higher the target burnup of the system, the lower the feed-fuel enrichment level that minimizes swing. The minimum attainable swing for a 125-MW(thermal) metallic-fueled sodium-cooled core is found to be ∼200 pcm for 5% FIMA burnup and increases to ∼800 pcm for a system aiming at 10% FIMA. In general, if the target discharge burnup is doubled, the minimum attainable burnup reactivity swing quadruples. Any optimized minimum reactivity swing core will form a positive parabolic uncontrolled reactivity trajectory with burnup, where the beginning of cycle and end of cycle reactivities are equal. Uranium-fueled fast cores with minimized burnup reactivity swing are net consumers of fissile material, with a fissile conversion ratio in the range of 0.7 to 0.9.