ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Staffan Qvist
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 11-27
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-30
Articles are hosted by Taylor and Francis Online.
In this study, the characteristics of changes in reactivity due to increasing burnup of uranium-fueled fast reactors are analyzed. A new classification system for nuclear reactor cores based on their uncontrolled tendency for reactivity changes during burnup was introduced and the design-optimization strategy for any fast reactor core aimed at a minimized reactivity swing is outlined. The 235U feed-fuel enrichment level that minimizes the burnup reactivity swing of a sodium-cooled metallic-fueled core is 10% to 12.5% for an average target fuel burnup of 1% to 20% FIMA (fission of initial metal atom). The higher the target burnup of the system, the lower the feed-fuel enrichment level that minimizes swing. The minimum attainable swing for a 125-MW(thermal) metallic-fueled sodium-cooled core is found to be ∼200 pcm for 5% FIMA burnup and increases to ∼800 pcm for a system aiming at 10% FIMA. In general, if the target discharge burnup is doubled, the minimum attainable burnup reactivity swing quadruples. Any optimized minimum reactivity swing core will form a positive parabolic uncontrolled reactivity trajectory with burnup, where the beginning of cycle and end of cycle reactivities are equal. Uranium-fueled fast cores with minimized burnup reactivity swing are net consumers of fissile material, with a fissile conversion ratio in the range of 0.7 to 0.9.