ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
O. S. Gokhale, B. P. Puranik, A. K. Ghosh
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 52-64
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-31
Articles are hosted by Taylor and Francis Online.
Heat transfer characteristics of intact fuel pins under reflood conditions have been extensively studied to understand the quench behavior of a typical pressurized water reactor (PWR). Overheating of fuel pins due to loss of nucleate boiling under exposed conditions causes the clad to balloon over large portions of the fuel pin length (up to 60%). The reflood behavior of ballooned fuel pins has been studied experimentally for ballooned heater pin configurations with an up to 15% ballooned length of the total length. Substantial changes in the reflood behavior are observed for a higher extent of the ballooned region. An experimental setup is thus being developed to study the effect of the large extent of the ballooned region (up to 60% of the total length) on the reflood behavior. The experimental setup employs a 5×5 matrix of indirectly heated fuel pins surrounded by 32 dummy fuel pins. The scaling analysis carried out for the design of the experimental setup is presented here. The nondimensional π terms pertaining to the quench phenomena have been conserved as compared to the typical PWR values. The evolution of some of the nondimensional π terms under reflood conditions has been discussed for simulations done with RELAP5 for ballooned as well as nonballooned test cases. Delayed quenching is observed in the extended ballooned fuel pins due to poor heat transfer in the ballooned region.