ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Hee-Jin Shim, Chang-Kyun Oh, Hyun-Su Kim, Myung-Hwan Boo, Jong-Jooh Kwon
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 88-96
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT13-150
Articles are hosted by Taylor and Francis Online.
Metal fatigue is a well-known phenomenon whereby material characteristics are deteriorated when even a small load is applied repeatedly. Therefore, an accurate fatigue evaluation is very important in terms of component integrity and reliability. In the design stage, the fatigue evaluation of nuclear class 1 components has to be performed in accordance with Sec. III of the ASME Boiler and Pressure Vessel Code. However, operating experience shows that the design transients are very conservative compared to the actual ones in terms of the heating/cooling rates and the number of transient occurrences. Considering that these two factors affect the thermal stress and thereafter the fatigue usage factor (FUF), the actual fatigue damage can differ from the design fatigue evaluation result. In order to evaluate and monitor the FUF exactly, therefore, various methods have been proposed and widely implemented. Among these, the cycle-based approach (CBA) utilizes the stresses for the design transients and reflects only the actual number of transient occurrences. For this reason, the CBA provides a conservative FUF, although it is very simple and easy to implement. Therefore, a simple and accurate fatigue monitoring method is still needed.
The purpose of this paper is to develop a new approach for effective fatigue damage monitoring. To do this, a thorough review is conducted for the design transients and actual transients for the Westinghouse-type pressurized water reactors in Korea. In addition, a wide range of finite element analyses are carried out varying the heating/cooling rates and the pattern of the transients. Based on this result, a new CBA is proposed incorporating the simple correction factors for both the heating/cooling rates and the transient patterns. A case study is also carried out for the reactor pressure vessel outlet nozzle to verify the validity and applicability of the proposed method. The result indicates that the proposed method can provide a realistic FUF, and more importantly, it is very easy to implement. From these, it is anticipated that the new approach can be widely used in practical fatigue monitoring of nuclear components and piping.