ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Joshua Kaizer
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 65-71
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-38
Articles are hosted by Taylor and Francis Online.
Empirical models are applicable over limited ranges of their predictor variables. The space defined by those ranges, the application domain, is the entire space over which the empirical model is applied. One important assumption is that the model’s predictive behavior is consistent over the entire application domain. This assumption is commonly made for critical heat flux (CHF) models when they are applied in reactor safety analysis. The intention of this work is to demonstrate that the current assessment methods used to justify this assumption may not always identify subregions in the application domain where the model’s predictive capability is degraded. This is accomplished by intentionally placing a nonconservative subregion in a CHF model and demonstrating that the current assessment methods are unable to identify that nonconservative subregion. As the existence of a nonconservative subregion may impact reactor safety analysis, a new method is proposed that does identify the nonconservative subregion. This new method is a multidimensional approach capable of demonstrating if the CHF model’s predictive behavior is likely due to random effects or is due to a degraded predictive capability in a given subregion.