ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Tetsuo Nishihara, Yoshiyuki Inagaki
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 100-106
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT06-A3692
Articles are hosted by Taylor and Francis Online.
Japan Atomic Energy Research Institute has performed the research and development of hydrogen production using the high-temperature engineering test reactor (HTTR). One of the key issues for the HTTR hydrogen production system is the development of control technology for stable operation. A thermal load absorber concept using a steam generator installed downstream of a reformer is proposed to mitigate a variation of helium temperature. Thermal-hydraulic analyses for the start-up operation and the suspension of the feed gas supply to the reformer are carried out. These results show that a large variation of the reformer outlet helium temperature takes place because of a change of the feed gas flow rate. However, the steam generator can mitigate the variation of the helium temperature. It is clarified that the HTTR can continue normal operation independently of the feed gas flow rate.