ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hirokazu Ohta, Takanari Ogata, Dimitrios Papaioannou, Vincenzo V. Rondinell, Marc Masson, Jean-Luc Paul
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 36-51
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-50
Articles are hosted by Taylor and Francis Online.
An irradiation experiment on minor actinide (MA)-bearing uranium-plutonium-zirconium (U-Pu-Zr) alloys, in which contamination by rare earth (RE) elements was considered, was performed up to ~2.5 at. %, ~7 at. %, and ~10 at. % burnups in the Phenix fast reactor. All the irradiated metal fuel pins were subjected to nondestructive tests such as cladding profilometry and gamma spectroscopy. Then, cross-sectional metallography of the low-burnup and medium-burnup fuel alloys was performed, and the redistribution of the fuel matrix constituents—U, Pu, and Zr—in the low-burnup fuels was analyzed by energy dispersive X-ray spectroscopy. As a result, the irradiation growth of MA-rich and RE-rich precipitates was observed by comparing the low-burnup and medium-burnup fuels. From the postirradiation examinations carried out so far, it was confirmed that the irradiation swelling, the cross-sectional structures, and the migration of matrix constituent in metal fuels containing 5 wt% or less MAs and REs are almost the same as those in conventional U-Pu-Zr fuels.