ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Hirokazu Ohta, Takanari Ogata, Dimitrios Papaioannou, Vincenzo V. Rondinell, Marc Masson, Jean-Luc Paul
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 36-51
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-50
Articles are hosted by Taylor and Francis Online.
An irradiation experiment on minor actinide (MA)-bearing uranium-plutonium-zirconium (U-Pu-Zr) alloys, in which contamination by rare earth (RE) elements was considered, was performed up to ~2.5 at. %, ~7 at. %, and ~10 at. % burnups in the Phenix fast reactor. All the irradiated metal fuel pins were subjected to nondestructive tests such as cladding profilometry and gamma spectroscopy. Then, cross-sectional metallography of the low-burnup and medium-burnup fuel alloys was performed, and the redistribution of the fuel matrix constituents—U, Pu, and Zr—in the low-burnup fuels was analyzed by energy dispersive X-ray spectroscopy. As a result, the irradiation growth of MA-rich and RE-rich precipitates was observed by comparing the low-burnup and medium-burnup fuels. From the postirradiation examinations carried out so far, it was confirmed that the irradiation swelling, the cross-sectional structures, and the migration of matrix constituent in metal fuels containing 5 wt% or less MAs and REs are almost the same as those in conventional U-Pu-Zr fuels.