ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Seong-Wan Hong, Jin-Ho Song, Hee-Dong Kim, Soon-Heung Chang
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 89-99
Technical Paper | Miscellaneous | doi.org/10.13182/NT06-A3691
Articles are hosted by Taylor and Francis Online.
The goals for hydrogen control in nuclear power plants are to design countermeasures that allow operators to avoid deflagration-to-detonation transition (DDT) and to ensure the survivability of equipment. These goals could be achieved by using a quenching mesh. Flame arrest tests are carried out using a quenching mesh with a 0.3-mm gap distance. When the quenching mesh is installed between compartments, the quenching mesh plays a role in flame quenching below 1.8 bars of the initial pressure and less than ~1.6 m/s of the flame velocity. Therefore, if the quenching mesh is properly installed in the containment, the flame could be arrested within the mesh boundary, resulting in the prevention of DDT and the survivability of equipment. Flame-quenching criteria are suggested using the expansion ratio, the initial air pressure, and the flame velocity.