ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
R. N. Nair, Y. S. Mayya, V. D. Puranik
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 53-69
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3689
Articles are hosted by Taylor and Francis Online.
A generic method has been developed to evaluate the reasonable upper-bound (RUB) dose from near-surface radioactive waste disposal facilities through a drinking water pathway. This generic method has been developed by applying a safety assessment model to seven near-surface radioactive waste disposal sites in India. The concentrations and effective radiation dose rates due to different radionuclides are evaluated at different distances from the disposal facilities. The peak dose rates received by members of the public at these distances are given per unit nuclear power capacity at the site [mSv/yr per GW(electric)yr]. The product of these normalized peak dose rates and the total existing or projected nuclear power capacity at a site [GW(electric)yr] will indicate the RUB dose rates from the near-surface disposal facility through a drinking water pathway at different distances. Results indicate that the sites can be grouped into two categories: (a) sites having groundwater velocity >10 cm/day (category 1) and (b) sites having groundwater velocity <10 cm/day (category 2). The variation in the dose rates between each category of sites is found to be small. Based on this finding, a generic method has been developed to evaluate the RUB dose rates to members of the public from the near-surface radioactive waste disposal facilities as a function of distances and nuclear power capacity. It is observed that the RUB dose rates at 1, 2, and 3 km are ~0.03, 0.02, and 0.01 mSv/yr, respectively, for category 1 sites for a nuclear power capacity of 1 GW(electric). These dose rates are reduced by a factor of 2 for category 2 sites. This generic method is found useful for the screening analysis of proposed low-level radioactive waste disposal sites as it estimates the RUB effective dose rates as a function of distance and nuclear power capacity for different categories of sites.