ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. N. Nair, Y. S. Mayya, V. D. Puranik
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 53-69
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3689
Articles are hosted by Taylor and Francis Online.
A generic method has been developed to evaluate the reasonable upper-bound (RUB) dose from near-surface radioactive waste disposal facilities through a drinking water pathway. This generic method has been developed by applying a safety assessment model to seven near-surface radioactive waste disposal sites in India. The concentrations and effective radiation dose rates due to different radionuclides are evaluated at different distances from the disposal facilities. The peak dose rates received by members of the public at these distances are given per unit nuclear power capacity at the site [mSv/yr per GW(electric)yr]. The product of these normalized peak dose rates and the total existing or projected nuclear power capacity at a site [GW(electric)yr] will indicate the RUB dose rates from the near-surface disposal facility through a drinking water pathway at different distances. Results indicate that the sites can be grouped into two categories: (a) sites having groundwater velocity >10 cm/day (category 1) and (b) sites having groundwater velocity <10 cm/day (category 2). The variation in the dose rates between each category of sites is found to be small. Based on this finding, a generic method has been developed to evaluate the RUB dose rates to members of the public from the near-surface radioactive waste disposal facilities as a function of distances and nuclear power capacity. It is observed that the RUB dose rates at 1, 2, and 3 km are ~0.03, 0.02, and 0.01 mSv/yr, respectively, for category 1 sites for a nuclear power capacity of 1 GW(electric). These dose rates are reduced by a factor of 2 for category 2 sites. This generic method is found useful for the screening analysis of proposed low-level radioactive waste disposal sites as it estimates the RUB effective dose rates as a function of distance and nuclear power capacity for different categories of sites.