ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
R. N. Nair, Y. S. Mayya, V. D. Puranik
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 53-69
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3689
Articles are hosted by Taylor and Francis Online.
A generic method has been developed to evaluate the reasonable upper-bound (RUB) dose from near-surface radioactive waste disposal facilities through a drinking water pathway. This generic method has been developed by applying a safety assessment model to seven near-surface radioactive waste disposal sites in India. The concentrations and effective radiation dose rates due to different radionuclides are evaluated at different distances from the disposal facilities. The peak dose rates received by members of the public at these distances are given per unit nuclear power capacity at the site [mSv/yr per GW(electric)yr]. The product of these normalized peak dose rates and the total existing or projected nuclear power capacity at a site [GW(electric)yr] will indicate the RUB dose rates from the near-surface disposal facility through a drinking water pathway at different distances. Results indicate that the sites can be grouped into two categories: (a) sites having groundwater velocity >10 cm/day (category 1) and (b) sites having groundwater velocity <10 cm/day (category 2). The variation in the dose rates between each category of sites is found to be small. Based on this finding, a generic method has been developed to evaluate the RUB dose rates to members of the public from the near-surface radioactive waste disposal facilities as a function of distances and nuclear power capacity. It is observed that the RUB dose rates at 1, 2, and 3 km are ~0.03, 0.02, and 0.01 mSv/yr, respectively, for category 1 sites for a nuclear power capacity of 1 GW(electric). These dose rates are reduced by a factor of 2 for category 2 sites. This generic method is found useful for the screening analysis of proposed low-level radioactive waste disposal sites as it estimates the RUB effective dose rates as a function of distance and nuclear power capacity for different categories of sites.