ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Young-Jong Chung, Hee-Kyung Kim, Hee-Cheol Kim, Sung-Quun Zee
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 41-52
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3688
Articles are hosted by Taylor and Francis Online.
The system-integrated modular advanced reactor (SMART) new phase (SMART-P) with a rated thermal power of 65.5 MW is currently being developed at the Korea Atomic Energy Research Institute. It is an innovative design to achieve a high degree of safety by adopting inherent safety-improving features and passive safety systems. Realistic and conservative calculations and a parameter study for a steam-line pipe break have been carried out by means of the TASS/SMR code. A set of transients for the whole system of SMART-P is investigated from the point of view of fuel integrity. The results of the analyses show that the most conservative initial conditions are thermal design flow, high system pressure, high coolant temperature, and high core power. It is also assumed that off-site power is unavailable and the steam section pipe guillotine break with the least reactive control rod assembly stuck out in the fully withdrawn position is a limiting case under the most moderator density reactivity condition. The SMART-P safety systems function properly and thus secure the reactor to a safe condition with respect to the safety parameters such as the critical heat flux ratio and the pressure. Natural circulation is well established in the primary and passive residual heat removal systems and is enough to ensure a stable plant shutdown condition after a reactor trips.