ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FERC rejects interconnection deal for Talen-Amazon data centers
The Federal Energy Regulatory Commission has denied plans for Talen Energy to supply additional on-site power to an Amazon Web Services’ data center campus from the neighboring Susquehanna nuclear plant in Pennsylvania.
Akihiro Ishimi, Kozo Katsuyama, Hirofumi Nakamura, Takeo Asaga, Hirotaka Furuya
Nuclear Technology | Volume 189 | Number 3 | March 2015 | Pages 312-317
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT14-34
Articles are hosted by Taylor and Francis Online.
A high-resolution X-ray computed tomography (CT) technique was developed that made it possible to obtain fine X-ray CT images of an irradiated fuel assembly. In addition, the density distributions in an irradiated mixed oxide fuel pellet could be continually measured using the relationship between the densities and the CT values. These results were compared to the results obtained by the metallographic method. It was found that the relative change of radial density distributions in the irradiated fuel pellet can be measured more accurately by the X-ray CT technique than by metallographic examination.