ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Lorenzo P. Pagani, George E. Apostolakis
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 9-17
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3685
Articles are hosted by Taylor and Francis Online.
The work presented in this paper is part of the broader issue of quantification of safety margins within a load-capacity framework in which uncertainties in loads and capacities are identified and quantified. The present paper describes an example of quantification of uncertainty in the capacity, i.e., the fuel failure enthalpy given a burnup level. The phenomena arising at high burnup are characterized by large uncertainties, as indicated by the scatter in the experimental data. We propose a framework for the probabilistic analysis of the failure limit, i.e., the enthalpy at failure, as a function of burnup. As an example, we obtain the distribution of the failure enthalpy for a Ziracloy-4 rod subjected to a reactivity-initiated accident in a pressurized water reactor by propagating the relevant uncertainties. We use the FRAPCON and FRAPTRAN computer codes, as well as a model for the probability of spallation, to simulate the transient and to obtain data points to derive the conditional probability distribution of the failure enthalpy at a given burnup level. The final results show that the distribution of the failure enthalpy shifts to lower values as burnup increases and that spallation is an important phenomenon.