ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The legacy of Windscale Pile No. 1
The core of Pile No. 1 at Windscale caught fire in the fall of 1957. The incident, rated a level 5, “Accident with Wider Consequences,” by the International Nuclear and Radiological Event Scale (INES), has since inspired nuclear safety culture, risk assessment, accident modeling, and emergency preparedness. Windscale also helped show how important communication and transparency are to gaining trust and public support.
Lorenzo P. Pagani, George E. Apostolakis
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 9-17
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3685
Articles are hosted by Taylor and Francis Online.
The work presented in this paper is part of the broader issue of quantification of safety margins within a load-capacity framework in which uncertainties in loads and capacities are identified and quantified. The present paper describes an example of quantification of uncertainty in the capacity, i.e., the fuel failure enthalpy given a burnup level. The phenomena arising at high burnup are characterized by large uncertainties, as indicated by the scatter in the experimental data. We propose a framework for the probabilistic analysis of the failure limit, i.e., the enthalpy at failure, as a function of burnup. As an example, we obtain the distribution of the failure enthalpy for a Ziracloy-4 rod subjected to a reactivity-initiated accident in a pressurized water reactor by propagating the relevant uncertainties. We use the FRAPCON and FRAPTRAN computer codes, as well as a model for the probability of spallation, to simulate the transient and to obtain data points to derive the conditional probability distribution of the failure enthalpy at a given burnup level. The final results show that the distribution of the failure enthalpy shifts to lower values as burnup increases and that spallation is an important phenomenon.