ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. M. Yakout
Nuclear Technology | Volume 189 | Number 3 | March 2015 | Pages 294-300
Technical Paper | Reprocessing | doi.org/10.13182/NT14-39
Articles are hosted by Taylor and Francis Online.
Radioactive element separation is of particular interest in nuclear technology. For this purpose, batch experiments were carried out in order to find the best separation conditions of uranium [U(VI)] and thorium [Th(IV)] from aqueous solution using rice straw activated carbon. The influence of pH and contact time on selective adsorption of U(VI) and Th(IV) was investigated. The results indicate that the velocity of these species from liquid phase to the surface of carbon is rapid enough. The reaction rate was fast, requiring only a short contact time of 40 min for U(VI) and 100 min for Th(IV). Sorption reaches maximum at pH 4 for Th(IV) and at pH 5.5 for U(VI). U(VI) and Th(IV) can be separated by the judicious controlling of pH and contact time. They can be separated from each other at pH 4 with different contact time [Th(IV) at lower time and U(VI) at 200 min]. Studies were conducted to examine the change in the adsorption behavior of U(VI) and Th(IV) on adsorbent as a function of employing different complexing agents of mineral and organic acids that are important in industrial and environmental processes, including hydrochloric, nitric, acetic, sulfuric, and phosphoric acids at 0.1M concentration. Acetic acid enhances U(VI) and Th(IV) uptake compared to mineral acids. These procedures may be useful in the separation of U(VI) and Th(IV) from natural or industrial samples containing these elements.