ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Timothy Ault, Steven Krahn, Allen Croff
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 152-162
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-19
Articles are hosted by Taylor and Francis Online.
A long-standing concern about the future implementation of thorium fuel cycles has been the availability of a thorium fuel cycle infrastructure, including thorium mineral recovery. Globally, while thorium is known to be a relatively abundant element, there is currently little commercial demand for thorium, leaving many of the world's largest thorium deposits unexploited. However, adoption and subsequent expansion of the thorium fuel cycle may not require “thorium mines” because a number of mining operations (notably titanium and uranium) already extract considerable amounts of thorium, which is presently discarded. Nearly 100000 tonnes of thorium per year could be recovered from active mine sites, with most of this coming from titanium mining (∼80000 tonnes/yr of thorium) and uranium mining (∼9000 tonnes/yr of thorium). This output would be sufficient to satisfy even the most optimistic demand for thorium resources in the near future.