ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jennifer A. Lyons, Wade R. Marcum, Sean Morrell, Mark DeHart
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 202-217
Technical Note | Fission Reactors | doi.org/10.13182/NT14-33
Articles are hosted by Taylor and Francis Online.
The Advanced Test Reactor (ATR) is conducting scoping studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low-enriched uranium (LEU) composition, through the Reduced Enrichment for Research and Test Reactors Program, within the Global Threat Reduction Initiative. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary reactor physics scoping and feasibility analysis of TRIGA fuel within the current ATR fuel element envelope and compares it to the functional requirements delineated by the Naval Reactors Program, which includes >4.8×1014 fissions/s·g−1 of 235U in test positions, a fast–to–thermal neutron flux ratio that has a <5% deviation from its current value, a desired steady cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other design parameters outside those put forth by the Naval Reactors Program that are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time. The result of this study demonstrates potential promise for implementation of TRIGA fuel in the ATR from a reactor physics perspective; discussion of observations and limitations are provided herein.