ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Benjamin C. Bowers, Bojan Petrovic
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 186-201
Technical Note | Radiation Transport and Protection | doi.org/10.13182/NT12-162
Articles are hosted by Taylor and Francis Online.
New computational methods in dose assessment and shielding calculations have drastically increased possible accuracy and resolution of the solution, while also increasing both memory demand and running time. In many cases, a trade-off must occur between these two parameters due to limited computational resources. This becomes prominent, particularly in hybrid deterministic-stochastic methods used for automated variance reduction, where the trade-off is additionally sought between the importance-generating deterministic portion and actual Monte Carlo simulations. This technical note examines this trade-off for the FW-CADIS methodology implemented in the MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) module of SCALE6, applying it to a simplified model of a power reactor. For the purposes of this study, the allowed total CPU time was held constant (12 and 48 h). It was found that improving the accuracy of the deterministic portion (within the single-processor limitation of the program version used) at the cost of reducing the available time for Monte Carlo was beneficial for the overall efficiency. While the analysis is specific to the selected problem, it is expected that the findings in a broader sense are relevant for other similar hybrid shielding methodologies and applications.