ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Benjamin C. Bowers, Bojan Petrovic
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 186-201
Technical Note | Radiation Transport and Protection | doi.org/10.13182/NT12-162
Articles are hosted by Taylor and Francis Online.
New computational methods in dose assessment and shielding calculations have drastically increased possible accuracy and resolution of the solution, while also increasing both memory demand and running time. In many cases, a trade-off must occur between these two parameters due to limited computational resources. This becomes prominent, particularly in hybrid deterministic-stochastic methods used for automated variance reduction, where the trade-off is additionally sought between the importance-generating deterministic portion and actual Monte Carlo simulations. This technical note examines this trade-off for the FW-CADIS methodology implemented in the MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) module of SCALE6, applying it to a simplified model of a power reactor. For the purposes of this study, the allowed total CPU time was held constant (12 and 48 h). It was found that improving the accuracy of the deterministic portion (within the single-processor limitation of the program version used) at the cost of reducing the available time for Monte Carlo was beneficial for the overall efficiency. While the analysis is specific to the selected problem, it is expected that the findings in a broader sense are relevant for other similar hybrid shielding methodologies and applications.