ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Seok-Hee Ryu, Kil-Sup Um, Jae-Il Lee
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 163-172
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-28
Articles are hosted by Taylor and Francis Online.
To evaluate the effect of thermal conductivity degradation for high-burnup fuel, a postulated control element assembly (CEA) ejection accident is assessed with the SPACE (Safety and Performance Analysis CodE) code. The SPACE code, which is currently under development as a safety analysis code for nuclear power plants, can predict thermal-hydraulic responses of the nuclear fuel and nuclear steam supply system during design basis accidents with two-fluid, three-field governing equations. Fuel performance behaviors during the CEA ejection accident using six fuel conductivity models including the burnup-independent reference conductivity model, the Lyons model, are investigated and compared with results of the reference model within the range from 0 to 30 GWd/tonne U. The Oak Ridge National Laboratory model predicts the highest peak fuel centerline temperature of 4531°F at 0 GWd/tonne U, and the modified Nuclear Fuels Institute model shows the uppermost value of 4796°F, which is 364°F higher than the reference model at 30 GWd/tonne U. It is also observed that the peak fuel centerline temperature increases linearly with fuel burnup and that the maximum increase rate of the peak centerline temperature per fuel burnup is ∼11.6°F per GWd/tonne U. For all thermal conductivity models, the maximum radial average fuel enthalpies are <230 cal/g, and the rise in radial average fuel enthalpy during the CEA ejection accident still remains within the pellet-cladding-mechanical-interaction failure criterion.