ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Seok-Hee Ryu, Kil-Sup Um, Jae-Il Lee
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 163-172
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-28
Articles are hosted by Taylor and Francis Online.
To evaluate the effect of thermal conductivity degradation for high-burnup fuel, a postulated control element assembly (CEA) ejection accident is assessed with the SPACE (Safety and Performance Analysis CodE) code. The SPACE code, which is currently under development as a safety analysis code for nuclear power plants, can predict thermal-hydraulic responses of the nuclear fuel and nuclear steam supply system during design basis accidents with two-fluid, three-field governing equations. Fuel performance behaviors during the CEA ejection accident using six fuel conductivity models including the burnup-independent reference conductivity model, the Lyons model, are investigated and compared with results of the reference model within the range from 0 to 30 GWd/tonne U. The Oak Ridge National Laboratory model predicts the highest peak fuel centerline temperature of 4531°F at 0 GWd/tonne U, and the modified Nuclear Fuels Institute model shows the uppermost value of 4796°F, which is 364°F higher than the reference model at 30 GWd/tonne U. It is also observed that the peak fuel centerline temperature increases linearly with fuel burnup and that the maximum increase rate of the peak centerline temperature per fuel burnup is ∼11.6°F per GWd/tonne U. For all thermal conductivity models, the maximum radial average fuel enthalpies are <230 cal/g, and the rise in radial average fuel enthalpy during the CEA ejection accident still remains within the pellet-cladding-mechanical-interaction failure criterion.