ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kosuke Aizawa, Yoshitaka Chikazawa
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 143-151
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-161
Articles are hosted by Taylor and Francis Online.
Failed fuel detection for the Japan Sodium-cooled Fast Reactor (JSFR) has been studied. The present JSFR design adopts a selector-valve (SV) failed fuel detection and location (FFDL) system. In this study, a tagging-gas (Tag) FFDL (Tag-FFDL) system has been investigated as an alternative. Although the identification performance of the Tag-FFDL system has been demonstrated in small and medium-sized reactors, the Tag-FFDL system has not been demonstrated yet in a large reactor like JSFR, which has 1500-MW(electric) power and 562 core fuel subassemblies. Major issues of the JSFR Tag-FFDL system are affected by high-burnup fuel and large cover gas volume. High-burnup fuel leads to a large change of the isotope ratio, which is important for the detection performance of the Tag-FFDL system. Since the cover gas volume in JSFR is larger than that in previous reactors, the tagging-gas concentration in the cover gas is lower than that in previous reactors. Thus, a requirement of the background value is more strict in JSFR. This study investigates whether two issues of the Tag-FFDL system for JSFR would be solvable. Tag gas isotope change in a high-burnup condition has been evaluated regarding transmutation and fission gas release. Taking into account tag gas isotope change due to the high-burnup conditions and large cover gas space, JSFR tagging gas has been designed. The investigation results showed that the JSFR FFDL system can provide an identification capability for 672 subassemblies, which is larger than the number of subassemblies in JSFR combining tagging-gas and burnup estimation. In addition, an allowable background concentration of natural Kr and Xe in the cover gas has been evaluated.