ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Kosuke Aizawa, Kaoru Fujita, Hideki Kamide, Naoto Kasahara
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 111-121
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-156
Articles are hosted by Taylor and Francis Online.
The Japan Sodium-cooled Fast Reactor (JSFR) is studied as an advanced loop-type sodium-cooled reactor. A selector-valve (SV) mechanism is adopted in the design of JSFR for its failed fuel detection and location (FFDL) system. JSFR has only two FFDL units for 562 core fuel subassemblies to reduce construction cost by decreasing the reactor vessel diameter. Consequently, one SV-FFDL unit must handle about 300 subassemblies. Because of the large number of subassemblies per unit, it is predicted that the total duration for measuring all the fuel subassemblies becomes long. In addition, JSFR adopts an upper internal structure (UIS) with a slit above the core. In order to detect the fission products from the subassemblies below the slit, additional sampling nozzles for the FFDL are set in the UIS around the slit. In previous water experiments and numerical simulation, the sampling performance for the subassemblies under the UIS slit has been evaluated to be lower than those under the normal UIS position. In this paper, the outline of the FFDL system is shown, which can be applied to a large number of fuel subassemblies in a compact reactor vessel. The detection capability of the FFDL system was studied to achieve the design conditions. Operation modes and procedures of the FFDL system were also investigated.