ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Patra, S. Saha Ray
Nuclear Technology | Volume 189 | Number 1 | January 2015 | Pages 103-109
Technical Note | Reactor Safety | doi.org/10.13182/NT13-148
Articles are hosted by Taylor and Francis Online.
This technical note introduces a numerical procedure that is efficient for calculating the solution for the fractional order nonlinear neutron point-kinetics equation in nuclear reactor dynamics. The explicit finite difference method (EFDM) is applied to solve the fractional order nonlinear neutron point-kinetics equation with Newtonian temperature feedback reactivity. This nonlinear neutron point-kinetics model has been analyzed in the presence of temperature feedback reactivity. The numerical solution obtained by EFDM is an approximate solution that is based on neutron density, precursor concentrations of multigroup delayed neutrons, and the reactivity function. The method is investigated using experimental data, with given initial conditions along with Newtonian temperature feedback reactivity. From the computational results, it can be shown that this numerical approximation method is straightforward and effective for solving fractional order nonlinear neutron point-kinetics equations. Numerical results citing the behavior of neutron density for different types of fractional order are presented graphically.