ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Charles Forsberg
Nuclear Technology | Volume 189 | Number 1 | January 2015 | Pages 63-70
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-137
Articles are hosted by Taylor and Francis Online.
Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation creating a new unexplored dimension in fuel cycle options. This may have large impacts on light water reactor (LWR) closed fuel cycles and waste management. If 240Pu is removed before recycling plutonium as mixed-oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, americium, and curium. Plutonium-240 is a fertile material and thus can be replaced by 238U. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Reducing production of 241Pu by removal of 240Pu reduces production of 241Am—the primary heat generator in spent nuclear fuel after several decades. Reducing heat-generating 241Am would reduce repository size, cost, and waste toxicity. Avoiding 241Am avoids its decay product 237Np, a nuclide that partly controls long-term oxidizing repository performance. The 240Pu could be added to the high-level waste for disposal. Some of these benefits also apply to plutonium recycled into fast reactors. However, the benefits are fewer because in a fast neutron spectrum, 240Pu is both a fissile material and a fertile material. There would be incentives to separate 242Pu and dispose of it as a waste.