ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Charles Forsberg
Nuclear Technology | Volume 189 | Number 1 | January 2015 | Pages 63-70
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-137
Articles are hosted by Taylor and Francis Online.
Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation creating a new unexplored dimension in fuel cycle options. This may have large impacts on light water reactor (LWR) closed fuel cycles and waste management. If 240Pu is removed before recycling plutonium as mixed-oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, americium, and curium. Plutonium-240 is a fertile material and thus can be replaced by 238U. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Reducing production of 241Pu by removal of 240Pu reduces production of 241Am—the primary heat generator in spent nuclear fuel after several decades. Reducing heat-generating 241Am would reduce repository size, cost, and waste toxicity. Avoiding 241Am avoids its decay product 237Np, a nuclide that partly controls long-term oxidizing repository performance. The 240Pu could be added to the high-level waste for disposal. Some of these benefits also apply to plutonium recycled into fast reactors. However, the benefits are fewer because in a fast neutron spectrum, 240Pu is both a fissile material and a fertile material. There would be incentives to separate 242Pu and dispose of it as a waste.