ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Matthew P. Simones, Sudarshan K. Loyalka
Nuclear Technology | Volume 189 | Number 1 | January 2015 | Pages 45-62
Technical Paper | Reactor Safety | doi.org/10.13182/NT14-14
Articles are hosted by Taylor and Francis Online.
In high-temperature gas-cooled reactors (HTGRs), an improved understanding of the production of carbonaceous dust (e.g., by abrasion, corrosion, radiation damage, and gas-to-particle conversion) and the subsequent transport of the dust and associated sorbed fission products is needed. Diffusion charging and/or self-charging of the suspended dust particles (aerosol) is likely to occur, which affects how the aerosol evolves in time and ultimately deposits on surfaces. At present, nuclear reactor safety codes, such as MELCOR, do not account for these effects and there is currently no consensus on their importance, partly due to a lack of experimental data as well as tools for computations. Further experimentation and modeling of these effects are therefore needed to resolve these issues. We report on an experimental investigation of the coagulation of charged aerosols pertinent to HTGRs by measuring the evolution of size and charge distributions over time and comparing the experimental results with computations using the direct simulation Monte Carlo method. Measurements have been completed for both silver and carbon ultrafine aerosols using a tandem differential mobility analyzer and an open-flow coagulation chamber with a residence time of nearly 400 s. Results for both aerosols indicate that coagulation occurs faster than predicted by the simulations, at times differing by an order of magnitude. While the paper is focused on specific aerosols, it is of wider significance in that it provides the first such comparisons between data and simulations on charged aerosol coagulation.