ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
R. Lo Frano
Nuclear Technology | Volume 189 | Number 1 | January 2015 | Pages 1-10
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-23
Articles are hosted by Taylor and Francis Online.
The aim of the study is to investigate the structural effects induced by a beyond design basis earthquake on the main safety relevant structures and components of an isolated liquid metal reactor, such as the European Lead-cooled SYstem (ELSY) or ALFRED projects. An extensive R&D program related to heavy-metal cooled systems was recently carried out as Euratom projects of the 6th and 7th Framework Programmes, addressing many of the most important issues related to the viability of a lead-cooled fast reactor. The importance of seismic effects is mainly related to the high inertial forces of the primary coolant (liquid metal) and associated with the impact of the liquid waves on the reactor structures. The isolation devices considered for the design were represented by means of an iso-elastic approach. Moreover, the influence of isolator failure was also evaluated. The fluid-structure interaction and the sloshing phenomenon, characterized by hydrodynamic and impact forces, were numerically investigated, since an explicit analytical solution for structures of such complex geometry is not possible. Numerical calculations (i.e., dynamic nonlinear analyses) were carried out with appropriate finite element method codes and external coupling. A validation analysis was further performed to check the consistency and adequacy of the method used with respect to the American Society of Civil Engineers (ASCE) 4-98 rules. The accelerations propagated in the reactor building confirmed the favorable effect of the seismic isolation, even with 2% faulted isolators. The results indicated that the stress state, in the reactor internals, is not sufficient to impair their structural integrity, although there is localized plastic deformation.