ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Te-Chuan Wang, Shih-Jen Wang, Jyh-Tong Teng
Nuclear Technology | Volume 152 | Number 3 | December 2005 | Pages 253-265
Technical Paper | Fission Reactors | doi.org/10.13182/NT05-A3674
Articles are hosted by Taylor and Francis Online.
The Chinshan nuclear power plant (NPP) is a Mark-I boiling water reactor (BWR) NPP located in northern Taiwan. The Chinshan NPP severe accident management guidelines (SAMGs) were developed based on the BWR Owners Group Emergency Procedure Guidelines/Severe Accident Guidelines and were developed at the end of 2003. The MAAP4 code has been used as a tool to validate the SAMG strategies. The development process and characteristics of the Chinshan SAMGs are described. The T5UtXC sequence, the highest core damage frequency in the probabilistic risk assessment insight of the Chinshan NPP, is cited as a reference case for SAMG validation. Not all safety injection systems are operated in the T5UtXC sequence. The severe accident progression is simulated, and the entry condition of the SAMGs is described. Then, the T5UtXC sequence is simulated with reactor pressure vessel (RPV) depressurization. Mitigation actions based on the Chinshan NPP SAMGs are then applied to demonstrate the effectiveness of the SAMGs. Sensitivity studies on RPV depressurization with the reactor water level and minimum RPV injection flow rate are also investigated in this study. Based on MAAP4 calculation and the default values of the parameters calculating the severe accident phenomena, the result shows that RPV depressurization before the reactor water level reaches one-fourth of the core water level can prevent the core from damage in the T5UtXC sequence. The flow rate of two control rod drive pumps is enough to maintain the reactor water level above the top of active fuel and cool down the core in the T5UtXC sequence without operator action.