ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Seok-Ki Choi, Myung-Hwan Wi, Won-Dae Jeon, Seong-O Kim
Nuclear Technology | Volume 152 | Number 2 | November 2005 | Pages 223-238
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT05-A3672
Articles are hosted by Taylor and Francis Online.
A computational study of thermal striping in an upper plenum of the Korea Advanced Liquid-Metal Reactor (KALIMER) was performed. The primary objective of the present study was to find the distribution of the amplitude of temperature fluctuation in the hot pool of KALIMER. The computations were performed using the CFX-4 code with the differential stress and flux turbulence model and the Van Leer convection scheme. Two cases with different outlet velocity of the control rod fuel assemblies are considered. The distributions of the velocity vector, temperature, and temperature fluctuation were obtained from the calculation. In order to quantitatively understand the amplitude of temperature fluctuation at the bottom wall of the upper internal structure (UIS), the amplitude of the fluctuation of temperature in the radial and angular directions was investigated. The amplitude of temperature fluctuation at the UIS bottom plate was largely dependent on the magnitude of the outlet velocity of the control rod fuel assemblies. From the calculated results, it was found that the largest temperature fluctuation occurred at the radial edge of the UIS bottom in the KALIMER design. Since thermal striping is dependent on the amplitude of temperature fluctuations and frequency, the region of the UIS bottom edge needs to be analyzed with a detailed unsteady calculation.