ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yong Hoon Jeong, Soon Heung Chang, Won-Pil Baek
Nuclear Technology | Volume 152 | Number 2 | November 2005 | Pages 162-169
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT05-A3667
Articles are hosted by Taylor and Francis Online.
The critical heat flux (CHF) on the reactor vessel outer wall was measured using the two-dimensional slice test section. The radius and the channel area of the test section were 2.5 m and 10 cm × 15 cm, respectively. The flow channel area and the heater width were smaller than those of the ULPU experiments, but the radius was greater than that of the ULPU. The CHF data under the inlet subcooling of 2 to 25°C and the mass flux 0 to 300 kg/m2s had been acquired. The measured CHF value was generally slightly lower than that of the ULPU. The difference possibly comes from the difference of the test section material and the thickness. However, the general trend of CHF according to the mass flux was similar with that of the ULPU. The experimental CHF data were compared with the predicted values by SULTAN correlation. The SULTAN correlation predicted well this study's data only for the mass flux higher than 200 kg/m2s, and for the exit quality lower than 0.05. The local condition-based correlation was developed, and it showed good prediction capability for broad quality (-0.01 to 0.5) and mass flux (<300 kg/m2s) conditions with a root-mean-square error of 2.4%. There were increases in the CHF with trisodium phosphate-added water.