ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
W. Yao, D. Bestion, P. Coste, M. Boucker
Nuclear Technology | Volume 152 | Number 1 | October 2005 | Pages 129-142
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT05-A3665
Articles are hosted by Taylor and Francis Online.
A three-dimensional (3-D) two-fluid model for a turbulent stratified flow with and without condensation is presented, in view of investigating pressurized thermal shock (PTS) scenarios when a stratified two-phase flow takes place in the cold legs of a pressurized water reactor. A modified turbulent K-[curly epsilon] model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on an interfacial sublayer concept and three interfacial heat transfer models - namely, a model based on the small eddies-controlled surface renewal concept, a model based on the asymptotic behavior of the eddy viscosity, and a model based on the interfacial sublayer concept - are implemented into a preliminary version of the NEPTUNE code based on the 3-D module of the CATHARE code. As a first step, the models are evaluated by comparison of calculated profiles of velocity, turbulent kinetic energy, and turbulent shear stress with data in a turbulent air-water stratified flow in a rectangular channel and with data for a water jet impacting the free surface of a water pool. Then, a turbulent steam-water stratified flow with condensation is calculated, and some first conclusions are drawn on the interfacial heat transfer modeling and on the applicability of the model to PTS investigations.