ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yeh-Chan Ahn, Byung Do Oh, Moo Hwan Kim
Nuclear Technology | Volume 152 | Number 1 | October 2005 | Pages 54-70
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT05-A3660
Articles are hosted by Taylor and Francis Online.
The theory for the current-sensing electromagnetic flowmeter was newly developed. The current-sensing flowmeter can achieve the measurement with a high temporal resolution so that it can be applied to measure the flows with fast transients like two-phase flow. The signal prediction and the calibration of the current-sensing flowmeter in simplified two-phase flow were conducted, and the given calibration process would be an important step toward the calibration for real two-phase flow. The three-dimensional virtual potential distributions for the electrodes of finite size were computed for single-phase flow, annular flow, and modeled slug flow. With the gradient of the virtual potential, weight functions related to each flow pattern were deduced. A flow pattern coefficient f was introduced to simplify the calibration process for two-phase flow and measured with the impedance spectroscopy method. In order to measure the local mean velocity of a developing flow using the electromagnetic flowmeter, a localization parameter was modeled and compared with experimental data.