ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Eriksson, J. Wallenius, M. Jolkkonen, J. E. Cahalan
Nuclear Technology | Volume 151 | Number 3 | September 2005 | Pages 314-333
Technical Paper | Accelerators | doi.org/10.13182/NT05-A3654
Articles are hosted by Taylor and Francis Online.
Transient safety characteristics of accelerator-driven systems using advanced minor actinide fuels have been investigated. Results for a molybdenum-based Ceramic-Metal (CerMet) fuel, a magnesia-based Ceramic-Ceramic fuel, and a zirconium-nitride-based fuel are reported. The focus is on the inherent safety aspects of core design. Accident analyses are carried out for the response to unprotected loss-of-flow and accelerator beam-overpower transients and coolant voiding scenarios. An attempt is made to establish basic design limits for the fuel and cladding. Maximum temperatures during transients are determined and compared with design limits. Reactivity effects associated with coolant void, fuel and structural expansion, and cladding relocation are investigated. Design studies encompass variations in lattice pitch and pin diameter. Critical mass studies are performed. The studies indicate favorable inherent safety features of the CerMet fuel. Major consideration is given to the potential threat of coolant voiding in accelerator-driven design proposals. Results for a transient test case study of a postulated steam generator tube rupture event leading to extensive coolant voiding are presented. The study underlines the importance of having a low coolant void reactivity value in a lead-bismuth system despite the high boiling temperature of the coolant. It was found that the power rise following a voiding transient increases dramatically near the critical state. The studies suggest that a reactivity margin of a few dollars in the voided state is sufficient to permit significant reactivity insertions.